Technikforum Industrial IoT

6G-Mobilfunk: Forschungs- und Anwendungs­projekte

Ob digitaler Zwilling, autonomes Fahren oder Pflegeroboter – Hightech-Anwendungen spielen beim neuen Mobilfunkstandard 6G eine wesentliche Rolle. Die ersten kommerziellen 6G-Netze sollen ab 2030 verfügbar sein. Schon heute erproben und entwickeln Forschende der Technischen Universität München (TUM) und der TU Dresden die grundlegenden Mechanismen der sechsten Mobilfunkgeneration. Ein Ziel ist es, ein vollständiges Kommunikationssystem mit Komponenten aufzubauen, die nur von deutschen Start-ups stammen.

 

Prof. Wolfgang Kellerer, Leiter des ‚6G Zukunftslabor Bayern‘, in einem Labor, in dem die Forschungsgruppe neuartige Verfahren für die Mobilkommunikation der Zukunft für industrielle Robotik-Anwendungen erforscht. Bild: Andreas Heddergott / TUM

 

Kernfragen beim Umstieg von 5G auf 6G

Während bei 5G die Kommunikation zwischen Maschinen im Vordergrund steht, soll bei 6G der Mensch und seine Kommunikation und Interaktion mit Maschinen und virtuellen Welten in den Mittelpunkt rücken. Die Forschenden von TUM und TU Dresden verfolgen vier grundlegende Fragestellungen: Wie wird die Kommunikation noch schneller? Wie können die Privatsphäre geschützt und Angriffe abgewehrt werden? Wie kann die Ausfallsicherheit für kritische Anwendungen in Industrie und Medizin maximiert werden? Und wie wird die Nachhaltigkeit der digitalen Kommunikation erhöht?
Die beiden Projekte ‚6G-life‘ und ‚6G Zukunftslabor Bayern‘, an denen die TUM und TU Dresden beteiligt sind, sollen sicherstellen, dass Deutschland eine führende Rolle in der Entwicklung der 6G-Technologie spielt. An der TUM sind über 30 Professuren an den Initiativen beteiligt und forschen zu unterschiedlichen zukunftsweisenden Themen, darunter die folgenden.

Digitale Zwillinge

Darum geht es: Digitale Zwillinge bilden bei 6G die Umgebung eines Kommunikationsgeräts in Echtzeit im virtuellen Raum ab. Darum ist es wichtig: Moderne Anwendungen, wie in der industriellen Automatisierung, der Medizintechnik oder bei autonomen Fahrzeugen, können bei 6G nur mit kontinuierlicher und stabiler Verbindung zuverlässig funktionieren. Für diese ist höchste Ausfallsicherheit eine Grundvoraussetzung.
So funktioniert es: Um höhere Datenraten zu übertragen, werden bei 6G höhere Frequenzen genutzt. Je höher eine Frequenz ist, desto schlechter kann sie Hindernisse wie Wände oder Türen durchdringen. Damit es nicht zu Verzögerungen in der Kommunikation kommt, muss sichergestellt sein, dass das Gerät rechtzeitig von einer Basisstation zur nächsten wechselt. Hier kommt der digitale Zwilling zum Einsatz: Durch die kontinuierliche Erfassung der Umgebung mittels Sensoren, die entweder direkt im Kommunikationsgerät, in den Basisstationen oder in der Umgebung platziert sind, wird ein dynamisch aktualisierter digitaler Zwilling erstellt. Dieser ermöglicht es dem Gerät zu jedem Zeitpunkt, seinen Standort im Raum genau zu bestimmen und situationsabhängig zu entscheiden, wann ein Wechsel zu einer anderen Basisstation vorteilhaft ist.

 

Vier Fahrroboter bewegen sich koordiniert im Labor, wobei der Einsatz eines Sensing-assistierten Digitalen Zwillings die Lokalisierung der Roboter durch die Modellierung der Funkwellenausbreitung ermöglicht. Bild: Adreas Heddergott / TUM

 

Abhörsichere und störfreie Übertragung

Darum geht es: Die Übertragung von Daten soll bei 6G störungsfrei funktionieren und gleichzeitig geschützt sein. Die Forschenden untersuchen hierfür die unterste Ebene der Kommunikation zwischen Computern, die sogenannte physikalische Schicht. Darum ist es wichtig: Neuartige Quantencomputer stellen eine potenzielle Bedrohung für die existierende Verschlüsselungsverfahren dar. Um eine quantensichere Datenübertragung zu gewährleisten, setzten die Forschenden mithilfe von Security-by-Design direkt auf der physikalischen Schicht an. Damit soll die Zeitverzögerung der Datenübertragung und gleichzeitig den Energieverbrauch minimiert werden.
So funktioniert es: Die Kommunikation zwischen Computern lässt sich durch das OSI-Modell beschreiben. Dieses Modell unterteilt den gesamten Prozess in sieben Schritten, bei denen jede Schicht ihre eigenen Funktionen und Aufgaben erfüllt und eng mit den anderen Schichten verknüpft ist. Die Forschenden setzen an der untersten Ebene an, der sogenannten physikalischen Schicht. Sie sorgt dafür, dass die Bits über physikalische Medien wie Kupferkabel, Glasfasern oder Funkwellen übertragen werden. Die Sicherheit soll durch ein neuartiges modulares Kodierungsverfahren erreicht werden, bei dem eine zusätzliche Sicherheitsschicht künstliches Rauschen zur Nachricht hinzufügt. Dieses führt dazu, dass die Abhörenden keine Informationen über die Nachricht aus ihrem Empfangssignal extrahieren können.

Adaptive Netzplattform für Telediagnostik und Teleüberwachung in der Medizin

Darum geht es: Medizinisches Personal soll mit einer Funkkommunikationsplattform unterstützt werden, die die Patientenüberwachung und Diagnostik aus der Ferne ermöglicht. Darum ist es wichtig: Diese Plattform soll die Telediagnostik und Teleüberwachung mithilfe von Robotern vereinfachen. Darüber hinaus können Anwendungen aus der Ferne individuell und kontextspezifisch an den Zustand der Patientinnen und Patienten angepasst werden.
So funktioniert es: Medizinische Anwendungen werden aus der Ferne über absolut zuverlässige Funkkommunikation mit minimaler Verzögerung bedient. Die beispielsweise von unterschiedlichen medizinischen Geräten erfassten Daten, werden an einer Stelle gesammelt und verarbeitet. Um die Verzögerungen bei der Übertragung möglichst gering zu halten, werden die Daten bereits im Netz aufbereitet. Diese Funktionen im Netz passen sich an die aktuelle Situation automatisch an.

 

Telemedizinische Untersuchung und Patientenmonitoring in einem gemeinsamen 6G-Netzwerk. Bild: F. Jurosch, S.Kolb und N. Kröger / TUM

 

Technologiesouveränität

Darum geht es: Zukünftige Kommunikationsnetze müssen in Zukunft unabhängig von bestimmten Herstellern geplant und betrieben werden können. Darum ist es wichtig: Gerade bei kritischen Infrastrukturen wie den Kommunikationssystemen ist es besonders wichtig, dass nicht nur das Know-how in der Forschung aufgebaut wird, sondern die gesamte Wertschöpfungskette inklusive Herstellung in Deutschland erfolgen kann.
So funktioniert es: Die Forschenden haben zum einen eine neue Metrik für die Planung von Netzen hinsichtlich Netzsouveränität entwickelt, zum anderen wurde ein vollständiges Ende-zu-Ende-Kommunikationssystem mit Komponenten, die nur von deutschen Start-ups stammen, aufgebaut.

 

Prof. Holger Boche, Leiter der Initiative ‚6G-life‘ und Prof. Wolfang Kellerer im schallisolierten Labor. Bild: Adreas Heddergott / TUM

 

Projekte und Förderungen

Die ‚6G-Initiative Bayern‘ steht im Rahmen der Hightech Agenda plus der Bayerischen Staatsregierung. Das Projekt ‚6G Zukunftslabor Bayern‘ wird gefördert vom Bayerischen Staatsministerium für Wirtschaft, Landesentwicklung und Energie.
Das Projekt ‚6G-life‘ ist eine gemeinsame Initiative der Technischen Universität Dresden und der TUM. Es wird zudem durch das Bundesministerium für Bildung und Forschung im Rahmen des Programms ‚Souverän. Digital. Vernetzt.‘ unterstützt.

 

Quelle: www.tum.de

Bild: Adreas Heddergott / TUM



LinkedInYoutube